3.8.36 \(\int \frac {\sec ^2(c+d x) (A+C \sec ^2(c+d x))}{\sqrt {a+b \sec (c+d x)}} \, dx\) [736]

3.8.36.1 Optimal result
3.8.36.2 Mathematica [B] (warning: unable to verify)
3.8.36.3 Rubi [A] (verified)
3.8.36.4 Maple [B] (verified)
3.8.36.5 Fricas [F]
3.8.36.6 Sympy [F]
3.8.36.7 Maxima [F]
3.8.36.8 Giac [F]
3.8.36.9 Mupad [F(-1)]

3.8.36.1 Optimal result

Integrand size = 35, antiderivative size = 320 \[ \int \frac {\sec ^2(c+d x) \left (A+C \sec ^2(c+d x)\right )}{\sqrt {a+b \sec (c+d x)}} \, dx=-\frac {2 (a-b) \sqrt {a+b} \left (8 a^2 C+3 b^2 (5 A+3 C)\right ) \cot (c+d x) E\left (\arcsin \left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right )|\frac {a+b}{a-b}\right ) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (1+\sec (c+d x))}{a-b}}}{15 b^4 d}-\frac {2 \sqrt {a+b} \left (8 a^2 C-2 a b C+3 b^2 (5 A+3 C)\right ) \cot (c+d x) \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right ),\frac {a+b}{a-b}\right ) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (1+\sec (c+d x))}{a-b}}}{15 b^3 d}-\frac {8 a C \sqrt {a+b \sec (c+d x)} \tan (c+d x)}{15 b^2 d}+\frac {2 C \sec (c+d x) \sqrt {a+b \sec (c+d x)} \tan (c+d x)}{5 b d} \]

output
-2/15*(a-b)*(8*C*a^2+3*b^2*(5*A+3*C))*cot(d*x+c)*EllipticE((a+b*sec(d*x+c) 
)^(1/2)/(a+b)^(1/2),((a+b)/(a-b))^(1/2))*(a+b)^(1/2)*(b*(1-sec(d*x+c))/(a+ 
b))^(1/2)*(-b*(1+sec(d*x+c))/(a-b))^(1/2)/b^4/d-2/15*(8*C*a^2-2*C*a*b+3*b^ 
2*(5*A+3*C))*cot(d*x+c)*EllipticF((a+b*sec(d*x+c))^(1/2)/(a+b)^(1/2),((a+b 
)/(a-b))^(1/2))*(a+b)^(1/2)*(b*(1-sec(d*x+c))/(a+b))^(1/2)*(-b*(1+sec(d*x+ 
c))/(a-b))^(1/2)/b^3/d-8/15*a*C*(a+b*sec(d*x+c))^(1/2)*tan(d*x+c)/b^2/d+2/ 
5*C*sec(d*x+c)*(a+b*sec(d*x+c))^(1/2)*tan(d*x+c)/b/d
 
3.8.36.2 Mathematica [B] (warning: unable to verify)

Leaf count is larger than twice the leaf count of optimal. \(2993\) vs. \(2(320)=640\).

Time = 23.96 (sec) , antiderivative size = 2993, normalized size of antiderivative = 9.35 \[ \int \frac {\sec ^2(c+d x) \left (A+C \sec ^2(c+d x)\right )}{\sqrt {a+b \sec (c+d x)}} \, dx=\text {Result too large to show} \]

input
Integrate[(Sec[c + d*x]^2*(A + C*Sec[c + d*x]^2))/Sqrt[a + b*Sec[c + d*x]] 
,x]
 
output
(Cos[c + d*x]*(b + a*Cos[c + d*x])*(A + C*Sec[c + d*x]^2)*((4*(15*A*b^2 + 
8*a^2*C + 9*b^2*C)*Sin[c + d*x])/(15*b^3) - (16*a*C*Tan[c + d*x])/(15*b^2) 
 + (4*C*Sec[c + d*x]*Tan[c + d*x])/(5*b)))/(d*(A + 2*C + A*Cos[2*c + 2*d*x 
])*Sqrt[a + b*Sec[c + d*x]]) - (4*((-2*A)/(Sqrt[b + a*Cos[c + d*x]]*Sqrt[S 
ec[c + d*x]]) - (6*C)/(5*Sqrt[b + a*Cos[c + d*x]]*Sqrt[Sec[c + d*x]]) - (1 
6*a^2*C)/(15*b^2*Sqrt[b + a*Cos[c + d*x]]*Sqrt[Sec[c + d*x]]) - (2*a*A*Sqr 
t[Sec[c + d*x]])/(b*Sqrt[b + a*Cos[c + d*x]]) - (16*a^3*C*Sqrt[Sec[c + d*x 
]])/(15*b^3*Sqrt[b + a*Cos[c + d*x]]) - (14*a*C*Sqrt[Sec[c + d*x]])/(15*b* 
Sqrt[b + a*Cos[c + d*x]]) - (2*a*A*Cos[2*(c + d*x)]*Sqrt[Sec[c + d*x]])/(b 
*Sqrt[b + a*Cos[c + d*x]]) - (16*a^3*C*Cos[2*(c + d*x)]*Sqrt[Sec[c + d*x]] 
)/(15*b^3*Sqrt[b + a*Cos[c + d*x]]) - (6*a*C*Cos[2*(c + d*x)]*Sqrt[Sec[c + 
 d*x]])/(5*b*Sqrt[b + a*Cos[c + d*x]]))*Sqrt[Cos[(c + d*x)/2]^2*Sec[c + d* 
x]]*(A + C*Sec[c + d*x]^2)*(2*(a + b)*(15*A*b^2 + 8*a^2*C + 9*b^2*C)*Sqrt[ 
Cos[c + d*x]/(1 + Cos[c + d*x])]*Sqrt[(b + a*Cos[c + d*x])/((a + b)*(1 + C 
os[c + d*x]))]*EllipticE[ArcSin[Tan[(c + d*x)/2]], (a - b)/(a + b)] - 2*b* 
(15*A*b^2 + (8*a^2 + 2*a*b + 9*b^2)*C)*Sqrt[Cos[c + d*x]/(1 + Cos[c + d*x] 
)]*Sqrt[(b + a*Cos[c + d*x])/((a + b)*(1 + Cos[c + d*x]))]*EllipticF[ArcSi 
n[Tan[(c + d*x)/2]], (a - b)/(a + b)] + (15*A*b^2 + 8*a^2*C + 9*b^2*C)*Cos 
[c + d*x]*(b + a*Cos[c + d*x])*Sec[(c + d*x)/2]^2*Tan[(c + d*x)/2]))/(15*b 
^3*d*(A + 2*C + A*Cos[2*c + 2*d*x])*Sqrt[Sec[(c + d*x)/2]^2]*Sec[c + d*...
 
3.8.36.3 Rubi [A] (verified)

Time = 1.22 (sec) , antiderivative size = 332, normalized size of antiderivative = 1.04, number of steps used = 11, number of rules used = 11, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.314, Rules used = {3042, 4581, 27, 3042, 4570, 27, 3042, 4493, 3042, 4319, 4492}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\sec ^2(c+d x) \left (A+C \sec ^2(c+d x)\right )}{\sqrt {a+b \sec (c+d x)}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\csc \left (c+d x+\frac {\pi }{2}\right )^2 \left (A+C \csc \left (c+d x+\frac {\pi }{2}\right )^2\right )}{\sqrt {a+b \csc \left (c+d x+\frac {\pi }{2}\right )}}dx\)

\(\Big \downarrow \) 4581

\(\displaystyle \frac {2 \int \frac {\sec (c+d x) \left (-4 a C \sec ^2(c+d x)+b (5 A+3 C) \sec (c+d x)+2 a C\right )}{2 \sqrt {a+b \sec (c+d x)}}dx}{5 b}+\frac {2 C \tan (c+d x) \sec (c+d x) \sqrt {a+b \sec (c+d x)}}{5 b d}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\int \frac {\sec (c+d x) \left (-4 a C \sec ^2(c+d x)+b (5 A+3 C) \sec (c+d x)+2 a C\right )}{\sqrt {a+b \sec (c+d x)}}dx}{5 b}+\frac {2 C \tan (c+d x) \sec (c+d x) \sqrt {a+b \sec (c+d x)}}{5 b d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\int \frac {\csc \left (c+d x+\frac {\pi }{2}\right ) \left (-4 a C \csc \left (c+d x+\frac {\pi }{2}\right )^2+b (5 A+3 C) \csc \left (c+d x+\frac {\pi }{2}\right )+2 a C\right )}{\sqrt {a+b \csc \left (c+d x+\frac {\pi }{2}\right )}}dx}{5 b}+\frac {2 C \tan (c+d x) \sec (c+d x) \sqrt {a+b \sec (c+d x)}}{5 b d}\)

\(\Big \downarrow \) 4570

\(\displaystyle \frac {\frac {2 \int \frac {\sec (c+d x) \left (2 a b C+\left (8 C a^2+3 b^2 (5 A+3 C)\right ) \sec (c+d x)\right )}{2 \sqrt {a+b \sec (c+d x)}}dx}{3 b}-\frac {8 a C \tan (c+d x) \sqrt {a+b \sec (c+d x)}}{3 b d}}{5 b}+\frac {2 C \tan (c+d x) \sec (c+d x) \sqrt {a+b \sec (c+d x)}}{5 b d}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\frac {\int \frac {\sec (c+d x) \left (2 a b C+\left (8 C a^2+3 b^2 (5 A+3 C)\right ) \sec (c+d x)\right )}{\sqrt {a+b \sec (c+d x)}}dx}{3 b}-\frac {8 a C \tan (c+d x) \sqrt {a+b \sec (c+d x)}}{3 b d}}{5 b}+\frac {2 C \tan (c+d x) \sec (c+d x) \sqrt {a+b \sec (c+d x)}}{5 b d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {\int \frac {\csc \left (c+d x+\frac {\pi }{2}\right ) \left (2 a b C+\left (8 C a^2+3 b^2 (5 A+3 C)\right ) \csc \left (c+d x+\frac {\pi }{2}\right )\right )}{\sqrt {a+b \csc \left (c+d x+\frac {\pi }{2}\right )}}dx}{3 b}-\frac {8 a C \tan (c+d x) \sqrt {a+b \sec (c+d x)}}{3 b d}}{5 b}+\frac {2 C \tan (c+d x) \sec (c+d x) \sqrt {a+b \sec (c+d x)}}{5 b d}\)

\(\Big \downarrow \) 4493

\(\displaystyle \frac {\frac {\left (8 a^2 C+3 b^2 (5 A+3 C)\right ) \int \frac {\sec (c+d x) (\sec (c+d x)+1)}{\sqrt {a+b \sec (c+d x)}}dx-\left (8 a^2 C-2 a b C+3 b^2 (5 A+3 C)\right ) \int \frac {\sec (c+d x)}{\sqrt {a+b \sec (c+d x)}}dx}{3 b}-\frac {8 a C \tan (c+d x) \sqrt {a+b \sec (c+d x)}}{3 b d}}{5 b}+\frac {2 C \tan (c+d x) \sec (c+d x) \sqrt {a+b \sec (c+d x)}}{5 b d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {\left (8 a^2 C+3 b^2 (5 A+3 C)\right ) \int \frac {\csc \left (c+d x+\frac {\pi }{2}\right ) \left (\csc \left (c+d x+\frac {\pi }{2}\right )+1\right )}{\sqrt {a+b \csc \left (c+d x+\frac {\pi }{2}\right )}}dx-\left (8 a^2 C-2 a b C+3 b^2 (5 A+3 C)\right ) \int \frac {\csc \left (c+d x+\frac {\pi }{2}\right )}{\sqrt {a+b \csc \left (c+d x+\frac {\pi }{2}\right )}}dx}{3 b}-\frac {8 a C \tan (c+d x) \sqrt {a+b \sec (c+d x)}}{3 b d}}{5 b}+\frac {2 C \tan (c+d x) \sec (c+d x) \sqrt {a+b \sec (c+d x)}}{5 b d}\)

\(\Big \downarrow \) 4319

\(\displaystyle \frac {\frac {\left (8 a^2 C+3 b^2 (5 A+3 C)\right ) \int \frac {\csc \left (c+d x+\frac {\pi }{2}\right ) \left (\csc \left (c+d x+\frac {\pi }{2}\right )+1\right )}{\sqrt {a+b \csc \left (c+d x+\frac {\pi }{2}\right )}}dx-\frac {2 \sqrt {a+b} \left (8 a^2 C-2 a b C+3 b^2 (5 A+3 C)\right ) \cot (c+d x) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (\sec (c+d x)+1)}{a-b}} \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right ),\frac {a+b}{a-b}\right )}{b d}}{3 b}-\frac {8 a C \tan (c+d x) \sqrt {a+b \sec (c+d x)}}{3 b d}}{5 b}+\frac {2 C \tan (c+d x) \sec (c+d x) \sqrt {a+b \sec (c+d x)}}{5 b d}\)

\(\Big \downarrow \) 4492

\(\displaystyle \frac {\frac {-\frac {2 \sqrt {a+b} \left (8 a^2 C-2 a b C+3 b^2 (5 A+3 C)\right ) \cot (c+d x) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (\sec (c+d x)+1)}{a-b}} \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right ),\frac {a+b}{a-b}\right )}{b d}-\frac {2 (a-b) \sqrt {a+b} \left (8 a^2 C+3 b^2 (5 A+3 C)\right ) \cot (c+d x) \sqrt {\frac {b (1-\sec (c+d x))}{a+b}} \sqrt {-\frac {b (\sec (c+d x)+1)}{a-b}} E\left (\arcsin \left (\frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {a+b}}\right )|\frac {a+b}{a-b}\right )}{b^2 d}}{3 b}-\frac {8 a C \tan (c+d x) \sqrt {a+b \sec (c+d x)}}{3 b d}}{5 b}+\frac {2 C \tan (c+d x) \sec (c+d x) \sqrt {a+b \sec (c+d x)}}{5 b d}\)

input
Int[(Sec[c + d*x]^2*(A + C*Sec[c + d*x]^2))/Sqrt[a + b*Sec[c + d*x]],x]
 
output
(2*C*Sec[c + d*x]*Sqrt[a + b*Sec[c + d*x]]*Tan[c + d*x])/(5*b*d) + (((-2*( 
a - b)*Sqrt[a + b]*(8*a^2*C + 3*b^2*(5*A + 3*C))*Cot[c + d*x]*EllipticE[Ar 
cSin[Sqrt[a + b*Sec[c + d*x]]/Sqrt[a + b]], (a + b)/(a - b)]*Sqrt[(b*(1 - 
Sec[c + d*x]))/(a + b)]*Sqrt[-((b*(1 + Sec[c + d*x]))/(a - b))])/(b^2*d) - 
 (2*Sqrt[a + b]*(8*a^2*C - 2*a*b*C + 3*b^2*(5*A + 3*C))*Cot[c + d*x]*Ellip 
ticF[ArcSin[Sqrt[a + b*Sec[c + d*x]]/Sqrt[a + b]], (a + b)/(a - b)]*Sqrt[( 
b*(1 - Sec[c + d*x]))/(a + b)]*Sqrt[-((b*(1 + Sec[c + d*x]))/(a - b))])/(b 
*d))/(3*b) - (8*a*C*Sqrt[a + b*Sec[c + d*x]]*Tan[c + d*x])/(3*b*d))/(5*b)
 

3.8.36.3.1 Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4319
Int[csc[(e_.) + (f_.)*(x_)]/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_S 
ymbol] :> Simp[-2*(Rt[a + b, 2]/(b*f*Cot[e + f*x]))*Sqrt[(b*(1 - Csc[e + f* 
x]))/(a + b)]*Sqrt[(-b)*((1 + Csc[e + f*x])/(a - b))]*EllipticF[ArcSin[Sqrt 
[a + b*Csc[e + f*x]]/Rt[a + b, 2]], (a + b)/(a - b)], x] /; FreeQ[{a, b, e, 
 f}, x] && NeQ[a^2 - b^2, 0]
 

rule 4492
Int[(csc[(e_.) + (f_.)*(x_)]*(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_)))/Sqrt[c 
sc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Simp[-2*(A*b - a*B)*Rt[a 
 + b*(B/A), 2]*Sqrt[b*((1 - Csc[e + f*x])/(a + b))]*(Sqrt[(-b)*((1 + Csc[e 
+ f*x])/(a - b))]/(b^2*f*Cot[e + f*x]))*EllipticE[ArcSin[Sqrt[a + b*Csc[e + 
 f*x]]/Rt[a + b*(B/A), 2]], (a*A + b*B)/(a*A - b*B)], x] /; FreeQ[{a, b, e, 
 f, A, B}, x] && NeQ[a^2 - b^2, 0] && EqQ[A^2 - B^2, 0]
 

rule 4493
Int[(csc[(e_.) + (f_.)*(x_)]*(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_)))/Sqrt[c 
sc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Simp[(A - B)   Int[Csc[e 
 + f*x]/Sqrt[a + b*Csc[e + f*x]], x], x] + Simp[B   Int[Csc[e + f*x]*((1 + 
Csc[e + f*x])/Sqrt[a + b*Csc[e + f*x]]), x], x] /; FreeQ[{a, b, e, f, A, B} 
, x] && NeQ[a^2 - b^2, 0] && NeQ[A^2 - B^2, 0]
 

rule 4570
Int[csc[(e_.) + (f_.)*(x_)]*((A_.) + csc[(e_.) + (f_.)*(x_)]*(B_.) + csc[(e 
_.) + (f_.)*(x_)]^2*(C_.))*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_S 
ymbol] :> Simp[(-C)*Cot[e + f*x]*((a + b*Csc[e + f*x])^(m + 1)/(b*f*(m + 2) 
)), x] + Simp[1/(b*(m + 2))   Int[Csc[e + f*x]*(a + b*Csc[e + f*x])^m*Simp[ 
b*A*(m + 2) + b*C*(m + 1) + (b*B*(m + 2) - a*C)*Csc[e + f*x], x], x], x] /; 
 FreeQ[{a, b, e, f, A, B, C, m}, x] &&  !LtQ[m, -1]
 

rule 4581
Int[csc[(e_.) + (f_.)*(x_)]^2*((A_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.))*(cs 
c[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_Symbol] :> Simp[(-C)*Csc[e + f* 
x]*Cot[e + f*x]*((a + b*Csc[e + f*x])^(m + 1)/(b*f*(m + 3))), x] + Simp[1/( 
b*(m + 3))   Int[Csc[e + f*x]*(a + b*Csc[e + f*x])^m*Simp[a*C + b*(C*(m + 2 
) + A*(m + 3))*Csc[e + f*x] - 2*a*C*Csc[e + f*x]^2, x], x], x] /; FreeQ[{a, 
 b, e, f, A, C, m}, x] && NeQ[a^2 - b^2, 0] &&  !LtQ[m, -1]
 
3.8.36.4 Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(2799\) vs. \(2(290)=580\).

Time = 19.45 (sec) , antiderivative size = 2800, normalized size of antiderivative = 8.75

method result size
parts \(\text {Expression too large to display}\) \(2800\)
default \(\text {Expression too large to display}\) \(2827\)

input
int(sec(d*x+c)^2*(A+C*sec(d*x+c)^2)/(a+b*sec(d*x+c))^(1/2),x,method=_RETUR 
NVERBOSE)
 
output
2*A/d/b*((cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos( 
d*x+c)+1))^(1/2)*EllipticE(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*a*co 
s(d*x+c)^2+(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(co 
s(d*x+c)+1))^(1/2)*EllipticE(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*b* 
cos(d*x+c)^2-EllipticF(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*(cos(d*x 
+c)/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)* 
b*cos(d*x+c)^2+2*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c 
))/(cos(d*x+c)+1))^(1/2)*EllipticE(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/ 
2))*a*cos(d*x+c)+2*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x 
+c))/(cos(d*x+c)+1))^(1/2)*EllipticE(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^( 
1/2))*b*cos(d*x+c)-2*EllipticF(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))* 
(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1) 
)^(1/2)*b*cos(d*x+c)+(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d 
*x+c))/(cos(d*x+c)+1))^(1/2)*EllipticE(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b)) 
^(1/2))*a+(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos 
(d*x+c)+1))^(1/2)*EllipticE(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*b-( 
cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1)) 
^(1/2)*EllipticF(cot(d*x+c)-csc(d*x+c),((a-b)/(a+b))^(1/2))*b+cos(d*x+c)*s 
in(d*x+c)*a+b*sin(d*x+c))*(a+b*sec(d*x+c))^(1/2)/(b+a*cos(d*x+c))/(cos(d*x 
+c)+1)+2/15*C/d/b^3*(a+b*sec(d*x+c))^(1/2)/(b+a*cos(d*x+c))/(cos(d*x+c)...
 
3.8.36.5 Fricas [F]

\[ \int \frac {\sec ^2(c+d x) \left (A+C \sec ^2(c+d x)\right )}{\sqrt {a+b \sec (c+d x)}} \, dx=\int { \frac {{\left (C \sec \left (d x + c\right )^{2} + A\right )} \sec \left (d x + c\right )^{2}}{\sqrt {b \sec \left (d x + c\right ) + a}} \,d x } \]

input
integrate(sec(d*x+c)^2*(A+C*sec(d*x+c)^2)/(a+b*sec(d*x+c))^(1/2),x, algori 
thm="fricas")
 
output
integral((C*sec(d*x + c)^4 + A*sec(d*x + c)^2)/sqrt(b*sec(d*x + c) + a), x 
)
 
3.8.36.6 Sympy [F]

\[ \int \frac {\sec ^2(c+d x) \left (A+C \sec ^2(c+d x)\right )}{\sqrt {a+b \sec (c+d x)}} \, dx=\int \frac {\left (A + C \sec ^{2}{\left (c + d x \right )}\right ) \sec ^{2}{\left (c + d x \right )}}{\sqrt {a + b \sec {\left (c + d x \right )}}}\, dx \]

input
integrate(sec(d*x+c)**2*(A+C*sec(d*x+c)**2)/(a+b*sec(d*x+c))**(1/2),x)
 
output
Integral((A + C*sec(c + d*x)**2)*sec(c + d*x)**2/sqrt(a + b*sec(c + d*x)), 
 x)
 
3.8.36.7 Maxima [F]

\[ \int \frac {\sec ^2(c+d x) \left (A+C \sec ^2(c+d x)\right )}{\sqrt {a+b \sec (c+d x)}} \, dx=\int { \frac {{\left (C \sec \left (d x + c\right )^{2} + A\right )} \sec \left (d x + c\right )^{2}}{\sqrt {b \sec \left (d x + c\right ) + a}} \,d x } \]

input
integrate(sec(d*x+c)^2*(A+C*sec(d*x+c)^2)/(a+b*sec(d*x+c))^(1/2),x, algori 
thm="maxima")
 
output
integrate((C*sec(d*x + c)^2 + A)*sec(d*x + c)^2/sqrt(b*sec(d*x + c) + a), 
x)
 
3.8.36.8 Giac [F]

\[ \int \frac {\sec ^2(c+d x) \left (A+C \sec ^2(c+d x)\right )}{\sqrt {a+b \sec (c+d x)}} \, dx=\int { \frac {{\left (C \sec \left (d x + c\right )^{2} + A\right )} \sec \left (d x + c\right )^{2}}{\sqrt {b \sec \left (d x + c\right ) + a}} \,d x } \]

input
integrate(sec(d*x+c)^2*(A+C*sec(d*x+c)^2)/(a+b*sec(d*x+c))^(1/2),x, algori 
thm="giac")
 
output
integrate((C*sec(d*x + c)^2 + A)*sec(d*x + c)^2/sqrt(b*sec(d*x + c) + a), 
x)
 
3.8.36.9 Mupad [F(-1)]

Timed out. \[ \int \frac {\sec ^2(c+d x) \left (A+C \sec ^2(c+d x)\right )}{\sqrt {a+b \sec (c+d x)}} \, dx=\int \frac {A+\frac {C}{{\cos \left (c+d\,x\right )}^2}}{{\cos \left (c+d\,x\right )}^2\,\sqrt {a+\frac {b}{\cos \left (c+d\,x\right )}}} \,d x \]

input
int((A + C/cos(c + d*x)^2)/(cos(c + d*x)^2*(a + b/cos(c + d*x))^(1/2)),x)
 
output
int((A + C/cos(c + d*x)^2)/(cos(c + d*x)^2*(a + b/cos(c + d*x))^(1/2)), x)